forkjo/vendor/github.com/keybase/go-crypto/openpgp/write.go

507 lines
14 KiB
Go
Raw Normal View History

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"crypto"
"hash"
"io"
"strconv"
"time"
"github.com/keybase/go-crypto/openpgp/armor"
"github.com/keybase/go-crypto/openpgp/errors"
"github.com/keybase/go-crypto/openpgp/packet"
"github.com/keybase/go-crypto/openpgp/s2k"
)
// DetachSign signs message with the private key from signer (which must
// already have been decrypted) and writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return detachSign(w, signer, message, packet.SigTypeBinary, config)
}
// ArmoredDetachSign signs message with the private key from signer (which
// must already have been decrypted) and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) (err error) {
return armoredDetachSign(w, signer, message, packet.SigTypeBinary, config)
}
// DetachSignText signs message (after canonicalising the line endings) with
// the private key from signer (which must already have been decrypted) and
// writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return detachSign(w, signer, message, packet.SigTypeText, config)
}
// ArmoredDetachSignText signs message (after canonicalising the line endings)
// with the private key from signer (which must already have been decrypted)
// and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return armoredDetachSign(w, signer, message, packet.SigTypeText, config)
}
func armoredDetachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
out, err := armor.Encode(w, SignatureType, nil)
if err != nil {
return
}
err = detachSign(out, signer, message, sigType, config)
if err != nil {
return
}
return out.Close()
}
// SignWithSigner signs the message of type sigType with s and writes the
// signature to w.
// If config is nil, sensible defaults will be used.
func SignWithSigner(s packet.Signer, w io.Writer, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
keyId := s.KeyId()
sig := new(packet.Signature)
sig.SigType = sigType
sig.PubKeyAlgo = s.PublicKeyAlgo()
sig.Hash = config.Hash()
sig.CreationTime = config.Now()
sig.IssuerKeyId = &keyId
s.Reset()
wrapped := s.(hash.Hash)
if sigType == packet.SigTypeText {
wrapped = NewCanonicalTextHash(s)
}
io.Copy(wrapped, message)
err = sig.Sign(s, nil, config)
if err != nil {
return
}
err = sig.Serialize(w)
return
}
func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
signerSubkey, ok := signer.signingKey(config.Now())
if !ok {
err = errors.InvalidArgumentError("no valid signing keys")
return
}
if signerSubkey.PrivateKey == nil {
return errors.InvalidArgumentError("signing key doesn't have a private key")
}
if signerSubkey.PrivateKey.Encrypted {
return errors.InvalidArgumentError("signing key is encrypted")
}
sig := new(packet.Signature)
sig.SigType = sigType
sig.PubKeyAlgo = signerSubkey.PrivateKey.PubKeyAlgo
sig.Hash = config.Hash()
sig.CreationTime = config.Now()
sig.IssuerKeyId = &signerSubkey.PrivateKey.KeyId
h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType)
if err != nil {
return
}
io.Copy(wrappedHash, message)
err = sig.Sign(h, signerSubkey.PrivateKey, config)
if err != nil {
return
}
return sig.Serialize(w)
}
// FileHints contains metadata about encrypted files. This metadata is, itself,
// encrypted.
type FileHints struct {
// IsBinary can be set to hint that the contents are binary data.
IsBinary bool
// FileName hints at the name of the file that should be written. It's
// truncated to 255 bytes if longer. It may be empty to suggest that the
// file should not be written to disk. It may be equal to "_CONSOLE" to
// suggest the data should not be written to disk.
FileName string
// ModTime contains the modification time of the file, or the zero time if not applicable.
ModTime time.Time
}
// SymmetricallyEncrypt acts like gpg -c: it encrypts a file with a passphrase.
// The resulting WriteCloser must be closed after the contents of the file have
// been written.
// If config is nil, sensible defaults will be used.
func SymmetricallyEncrypt(ciphertext io.Writer, passphrase []byte, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
if hints == nil {
hints = &FileHints{}
}
key, err := packet.SerializeSymmetricKeyEncrypted(ciphertext, passphrase, config)
if err != nil {
return
}
w, err := packet.SerializeSymmetricallyEncrypted(ciphertext, config.Cipher(), key, config)
if err != nil {
return
}
literaldata := w
if algo := config.Compression(); algo != packet.CompressionNone {
var compConfig *packet.CompressionConfig
if config != nil {
compConfig = config.CompressionConfig
}
literaldata, err = packet.SerializeCompressed(w, algo, compConfig)
if err != nil {
return
}
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
return packet.SerializeLiteral(literaldata, hints.IsBinary, hints.FileName, epochSeconds)
}
// intersectPreferences mutates and returns a prefix of a that contains only
// the values in the intersection of a and b. The order of a is preserved.
func intersectPreferences(a []uint8, b []uint8) (intersection []uint8) {
var j int
for _, v := range a {
for _, v2 := range b {
if v == v2 {
a[j] = v
j++
break
}
}
}
return a[:j]
}
func hashToHashId(h crypto.Hash) uint8 {
v, ok := s2k.HashToHashId(h)
if !ok {
panic("tried to convert unknown hash")
}
return v
}
// Encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
var signer *packet.PrivateKey
if signed != nil {
signKey, ok := signed.signingKey(config.Now())
if !ok {
return nil, errors.InvalidArgumentError("no valid signing keys")
}
signer = signKey.PrivateKey
if signer == nil {
return nil, errors.InvalidArgumentError("no private key in signing key")
}
if signer.Encrypted {
return nil, errors.InvalidArgumentError("signing key must be decrypted")
}
}
// These are the possible ciphers that we'll use for the message.
candidateCiphers := []uint8{
uint8(packet.CipherAES128),
uint8(packet.CipherAES256),
uint8(packet.CipherCAST5),
}
// These are the possible hash functions that we'll use for the signature.
candidateHashes := []uint8{
hashToHashId(crypto.SHA256),
hashToHashId(crypto.SHA512),
hashToHashId(crypto.SHA1),
hashToHashId(crypto.RIPEMD160),
}
// If no preferences were specified, assume something safe and reasonable.
defaultCiphers := []uint8{
uint8(packet.CipherAES128),
uint8(packet.CipherAES192),
uint8(packet.CipherAES256),
uint8(packet.CipherCAST5),
}
defaultHashes := []uint8{
hashToHashId(crypto.SHA256),
hashToHashId(crypto.SHA512),
hashToHashId(crypto.RIPEMD160),
}
encryptKeys := make([]Key, len(to))
for i := range to {
var ok bool
encryptKeys[i], ok = to[i].encryptionKey(config.Now())
if !ok {
return nil, errors.InvalidArgumentError("cannot encrypt a message to key id " + strconv.FormatUint(to[i].PrimaryKey.KeyId, 16) + " because it has no encryption keys")
}
sig := to[i].primaryIdentity().SelfSignature
preferredSymmetric := sig.PreferredSymmetric
if len(preferredSymmetric) == 0 {
preferredSymmetric = defaultCiphers
}
preferredHashes := sig.PreferredHash
if len(preferredHashes) == 0 {
preferredHashes = defaultHashes
}
candidateCiphers = intersectPreferences(candidateCiphers, preferredSymmetric)
candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
}
if len(candidateCiphers) == 0 {
return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common ciphers")
}
if len(candidateHashes) == 0 {
return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common hashes")
}
cipher := packet.CipherFunction(candidateCiphers[0])
// If the cipher specifed by config is a candidate, we'll use that.
configuredCipher := config.Cipher()
for _, c := range candidateCiphers {
cipherFunc := packet.CipherFunction(c)
if cipherFunc == configuredCipher {
cipher = cipherFunc
break
}
}
var hash crypto.Hash
for _, hashId := range candidateHashes {
if h, ok := s2k.HashIdToHash(hashId); ok && h.Available() {
hash = h
break
}
}
// If the hash specified by config is a candidate, we'll use that.
if configuredHash := config.Hash(); configuredHash.Available() {
for _, hashId := range candidateHashes {
if h, ok := s2k.HashIdToHash(hashId); ok && h == configuredHash {
hash = h
break
}
}
}
if hash == 0 {
hashId := candidateHashes[0]
name, ok := s2k.HashIdToString(hashId)
if !ok {
name = "#" + strconv.Itoa(int(hashId))
}
return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)")
}
symKey := make([]byte, cipher.KeySize())
if _, err := io.ReadFull(config.Random(), symKey); err != nil {
return nil, err
}
for _, key := range encryptKeys {
if err := packet.SerializeEncryptedKey(ciphertext, key.PublicKey, cipher, symKey, config); err != nil {
return nil, err
}
}
encryptedData, err := packet.SerializeSymmetricallyEncrypted(ciphertext, cipher, symKey, config)
if err != nil {
return
}
if signer != nil {
ops := &packet.OnePassSignature{
SigType: packet.SigTypeBinary,
Hash: hash,
PubKeyAlgo: signer.PubKeyAlgo,
KeyId: signer.KeyId,
IsLast: true,
}
if err := ops.Serialize(encryptedData); err != nil {
return nil, err
}
}
if hints == nil {
hints = &FileHints{}
}
w := encryptedData
if signer != nil {
// If we need to write a signature packet after the literal
// data then we need to stop literalData from closing
// encryptedData.
w = noOpCloser{encryptedData}
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds)
if err != nil {
return nil, err
}
if signer != nil {
return signatureWriter{encryptedData, literalData, hash, hash.New(), signer, config}, nil
}
return literalData, nil
}
// signatureWriter hashes the contents of a message while passing it along to
// literalData. When closed, it closes literalData, writes a signature packet
// to encryptedData and then also closes encryptedData.
type signatureWriter struct {
encryptedData io.WriteCloser
literalData io.WriteCloser
hashType crypto.Hash
h hash.Hash
signer *packet.PrivateKey
config *packet.Config
}
func (s signatureWriter) Write(data []byte) (int, error) {
s.h.Write(data)
return s.literalData.Write(data)
}
func (s signatureWriter) Close() error {
sig := &packet.Signature{
SigType: packet.SigTypeBinary,
PubKeyAlgo: s.signer.PubKeyAlgo,
Hash: s.hashType,
CreationTime: s.config.Now(),
IssuerKeyId: &s.signer.KeyId,
}
if err := sig.Sign(s.h, s.signer, s.config); err != nil {
return err
}
if err := s.literalData.Close(); err != nil {
return err
}
if err := sig.Serialize(s.encryptedData); err != nil {
return err
}
return s.encryptedData.Close()
}
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer.
// TODO: we have two of these in OpenPGP packages alone. This probably needs
// to be promoted somewhere more common.
type noOpCloser struct {
w io.Writer
}
func (c noOpCloser) Write(data []byte) (n int, err error) {
return c.w.Write(data)
}
func (c noOpCloser) Close() error {
return nil
}
// AttachedSign is like openpgp.Encrypt (as in p.crypto/openpgp/write.go), but
// don't encrypt at all, just sign the literal unencrypted data.
// Unfortunately we need to duplicate some code here that's already
// in write.go
func AttachedSign(out io.WriteCloser, signed Entity, hints *FileHints,
config *packet.Config) (in io.WriteCloser, err error) {
if hints == nil {
hints = &FileHints{}
}
if config == nil {
config = &packet.Config{}
}
var signer *packet.PrivateKey
signKey, ok := signed.signingKey(config.Now())
if !ok {
err = errors.InvalidArgumentError("no valid signing keys")
return
}
signer = signKey.PrivateKey
if signer == nil {
err = errors.InvalidArgumentError("no valid signing keys")
return
}
if signer.Encrypted {
err = errors.InvalidArgumentError("signing key must be decrypted")
return
}
if algo := config.Compression(); algo != packet.CompressionNone {
var compConfig *packet.CompressionConfig
if config != nil {
compConfig = config.CompressionConfig
}
out, err = packet.SerializeCompressed(out, algo, compConfig)
if err != nil {
return
}
}
hasher := config.Hash() // defaults to SHA-256
ops := &packet.OnePassSignature{
SigType: packet.SigTypeBinary,
Hash: hasher,
PubKeyAlgo: signer.PubKeyAlgo,
KeyId: signer.KeyId,
IsLast: true,
}
if err = ops.Serialize(out); err != nil {
return
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
// We don't want the literal serializer to closer the output stream
// since we're going to need to write to it when we finish up the
// signature stuff.
in, err = packet.SerializeLiteral(noOpCloser{out}, hints.IsBinary, hints.FileName, epochSeconds)
if err != nil {
return
}
// If we need to write a signature packet after the literal
// data then we need to stop literalData from closing
// encryptedData.
in = signatureWriter{out, in, hasher, hasher.New(), signer, config}
return
}